МИНОБРНАУКИ РОССИИ

Орский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Орский гуманитарно-технологический институт (филиал) ОГУ)

Кафедра электроэнергетики и теплоэнергетики

УТВЕРЖДАЮ

Заместитель директора по учебно методической

работе

Н.И. Тришкина

«27» сентября 2017 г.

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.В.ДВ.7.1 Теория решения изобретательских задач»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

13.03.01 Теплоэнергетика и теплотехника (код и наименование направления подготовки)

<u>Энергообеспечение предприятий</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы *Программа академического бакалавриата*

Квалификация <u>Бакалавр</u>

Форма обучения Заочная

Год начала реализации программы (набора) 2018

Рабочая программа дисциплины «Б.1.В.ДВ.7.1 Теория решения изобретательских задач» / сост. О. С. Ануфриенко – Орск: Орский гуманитарно-технологический институт (филиал) ОГУ, 2017. – 14 с.

Рабочая программа предназначена студентам заочной формы обучения по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника

[©] Ануфриенко О.С., 2017 © Орский гуманитарнотехнологический институт (филиал) ОГУ, 2017

Содержание

1 Цели и задачи освоения дисциплины	4
2 Место дисциплины в структуре образовательной программы	5
3 Требования к результатам обучения по дисциплине	6
4 Структура и содержание дисциплины	6
	6
4.2 Содержание разделов дисциплины	7
4.3 Практические занятия (семинары)	8
4.4 Лабораторные работы	
4.5 Контрольная работа	
4.6 Самостоятельное изучение разделов дисциплины	
	9
5.1 Основная литература	9
5.2 Дополнительная литература	10
5.3 Периодические издания	10
5.4 Интернет-ресурсы	11
5.5 Программное обеспечение, профессиональные базы данных и информационные	
справочные системы современных информационных технологий	12
6 Материально-техническое обеспечение дисциплины	12
Лист согласования рабочей программы дисциплины	13
Дополнения и изменения в рабочей программе дисциплины	14

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

Цель – развитие навыков по системному анализу технических систем, творческому подходу к решению нестандартных технических задач, овладению методологией поиска новых эффективных решений.

Задачи:

- Познакомить студентов с алгоритмом, позволяющем без перебора бесконечных вариантов решения проблемы найти наиболее подходящий вариант, отбросив менее качественные.
 - Продемонстрировать критерий эффективности изобретательских задач.
- Научить прогнозировать развитие технической системы с получением перспективных решений.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам (модулям) по выбору вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.19 Метрология, сертификация, технические измерения и автоматизация тепловых процессов, Б.1.Б.21 Нетрадиционные и возобновляемые источники энергии, Б.1.В.ОД.1 Введение в специальность

Требования к входным результатам обучения, необходимым для освоения дисциплины

Предварительные результаты обучения, которые должны быть	Компетенции
сформированы у обучающегося до начала изучения дисциплины	
<u>Знать:</u>	ОПК-1 способностью
методы обработки и анализа результатов, полученных при решении	осуществлять поиск,
физических задач и при проведении инженерного эксперимента	хранение, обработку и анализ
естественнонаучного содержания	информации из различных
Уметь:	источников и баз данных,
<u></u> представлять результаты, полученные при проведении физических	представлять ее в требуемом
исследований, в табличной форме, а также в виде графических	формате с использованием
зависимостей; формулировать выводы по полученным зависимостям	информационных,
Владеть:	компьютерных и сетевых
способностью осуществлять самостоятельный поиск	технологий
дополнительной информации из различных источников при	
проведении теоретических и экспериментальных исследований	
физических процессов и явлений, систематизировать имеющуюся	
информацию	
Знать:	ОПК-2 способностью
	демонстрировать базовые
материалам в области нетрадиционных и возобновляемых источников	
энергии; методы проведения расчётов энергетической мощности	
установок для использования энергии солнца, ветра и др.	дисциплин, готовностью
энергетических ресурсов.	выявлять
Уметь:	естественнонаучную
 – рассчитывать себестоимость энергии, обосновывать выбор 	сущность проблем,
оборудования; оценивать потенциал возможной генерации энергии на	возникающих в ходе
•	деятельности; применять для
источников.	
	законы естествознания,
нетрадиционных источниках; составлять энергетические балансы тепло-технологических схем и их элементов на базе нетрадиционных	профессиональной деятельности; применять для их разрешения основные

Предварительные результаты обучения, которые должны быть	Компетенции
сформированы у обучающегося до начала изучения дисциплины	
Владеть:	методы математического
– методами оценки потенциала, себестоимость энергии, обоснования	анализа и моделирования,
экологических преимуществ использования нетрадиционных	теоретического и
источников на предприятиях энергетики, промышленности, ЖКХ.	экспериментального
	исследования
Знать:	ПК – 1 расчётно-проектной и
 назначение, классификации, устройства и принципы действия 	
* * * * * * * * * * * * * * * * * * *	деятельностью:
энергоносителей, используемых на производстве;	способностью участвовать в
 элементарную базу организации и управления учётом энерго- 	сборе и анализе исходных
носителей на производстве и ЖКХ;	данных для проектирования
±	
 конструкцию и принцип действия АИСКУЭ; 	энергообъектов и их
 основы программного обеспечения систем АИСКУЭ. 	элементов в соответствии с
Уметь:	нормативной документацией.
– анализировать показания контрольно-измерительных п приборов	
при работе нагнетателей и двигателей;	
 производить контроль и анализ динамики учёта энергоносителей; 	
 оценивать потерю энергоносителей; 	
– делать обоснованный выбор оборудования.	
Владеть:	
 методами расчётно-проектной и проектно-конструкторской 	
деятельности в анализе уровней АИСКУЭ.	
Знать:	ПК-3 способностью
- основные источники научно-технической информации по материа-	участвовать в проведении
лам в области нетрадиционных и возобновляемых источников	
энергии; методы проведения расчётов энергетической мощности	
• • • • • • • • • • • • • • • • • • • •	проектных разработок
•	энергообъектов и их
энергетических ресурсов.	=
Уметь:	элементов по стандартным
– рассчитывать себестоимость энергии, обосновывать выбор	методикам
оборудования; оценивать потенциал возможной генерации энергии на	
нетрадиционных источниках; составлять энергетические балансы	
тепло-технологических схем и их элементов на базе нетрадиционных	
источников.	
Владеть:	
- методами оценки потенциала, себестоимость энергии, обоснования	
экологических преимуществ использования нетрадиционных	
источников на предприятиях энергетики, промышленности, ЖКХ.	
Знать: методические основы метрологического обеспечения,	ПК-8 готовностью к участию
основные правовые основы обеспечения единства измерений,	в организации
-	метрологического
качество системы регулирования.	обеспечения
VMATE : NOMEDIATE OCHODIN IS HONOMOTHE OF SECTION OF SECTION OF THE OPEN	технологических процессов
Уметь: измерять основные параметры объекта с помощью типовых	при использовании типовых
измерительных приборов, оценивать погрешности измерений.	-
Владеть: методами измерения величин типовыми приборами;	методов контроля режимов
методами обработки результатов и оценки погрешностей измерений, а	работы технологического
также методами анализа и построения автоматизированных систем	оборудования
управления.	

Постреквизиты дисциплины: Отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие	Формируемые
этапы формирования компетенций	компетенции
<u>Знать:</u>	ПК-4 способностью к
основные типы, характеристики, параметры и области применения	проведению
электротехнических, электронных приборов и устройств; принципы	экспериментов по
построения различных аналоговых и импульсных элементов и устройств;	
состав и принцип действия цифровых устройств, используемых при	обработке и анализу
обработке и анализу полученных результатов с привлечением	полученных результатов с
соответствующего математического аппарата	привлечением
<u>Уметь:</u>	соответствующего
выполнять расчет баланса энергетического оборудования в	математического аппарата
установившемся режиме и переходных процессах; использовать активные	
приборы для построения элементов электронной аппаратуры и применять	
модели анализа с привлечением соответствующего математического	
аппарата.	
Владеть:	
навыками чтения и понимания тепловых схем, использования	
электроизмерительных приборов.	
 методами принятия эвристических решений в профессиональной сфере 	

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 академических часов).

	Трудоемкость,				
Вид работы	академических часов				
	6 семестр	7 семестр	всего		
Общая трудоёмкость	108	72	180		
Контактная работа:	4	9,5	13,5		
Лекции (Л)	2	2	4		
Практические занятия (ПЗ)	2	6	8		
Консультации		1	1		
Промежуточная аттестация (зачет, экзамен)		0,5	0,5		
Самостоятельная работа:	104	62,5	166,5		
– контрольная работа		20	20		
самостоятельное изучение разделов	90	20	110		
- самоподготовка (проработка и повторение лекционного					
материала и материала учебников и учебных пособий);	14	17,5	31,5		
– подготовка к практическим занятиям;					
– подготовка к рубежному контролю и т.п.		5	5		
Вид итогового контроля (зачет, экзамен,		экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 6 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Эвристические методы перебора вариантов.	37	1	1		35
2	Эвристические методы активации перебора	36	0,5	0,5		35
	вариантов.					

		Количество часов				
<u>№</u> раздела	Наименование разделов	всего	аудиторная работа			внеауд. работа
			Л	П3	ЛР	раоота
3	Теория решения изобретательских задач. Законы	35	0,5	0,5		34
	развития технических систем. Законы развития					
	технических систем					
	Итого:	108	2	2		104

Разделы дисциплины, изучаемые в 7 семестре

				Количество часов			
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд. работа	
			Л	П3	ЛР	paoora	
4	Методы разрешения противоречий в	19	1	2		16	
	технической системе. Методы ТРИЗ.						
	Вепольный анализ.						
5	Стандарты, эффекты и решения	19	1	2		16	
	изобретательских задач. Химия, физика,						
	геометрия, термодинамика в изобретениях.						
6	Алгоритм решения изобретательских задач	17		1		16	
	(АРИЗ)						
7	Специализированная интеллектуальная	17		1		16	
	программная система "Изобретающая машина"						
	Итого:	72	2	6		64	
	Всего:	180	4	8		168	

4.2 Содержание разделов дисциплины

Раздел №1. Эвристические методы перебора вариантов.

. Исторические сведение о подходе к решению инженерных задач. Эвристика. Метод мозгового штурма. Метод перебора вариантов.

Раздел №2. Эвристические методы активации перебора вариантов.

Синектика. Виды аналогий. Личная аналогия. Фантастическая аналогия. Символическая аналогия. Метод контрольных вопросов. Морфологический метод. Методы теплоэнергетики. Примеры эвристических методов теплоэнергетике.

Раздел №3. Теория решения изобретательских задач. Законы развития технических систем. Законы развития технических систем

Основные понятия. Критерии развития технических систем. Линия жизни технической системы. Анализ теплоэнергетической системы.

Прогнозная линия жизни энергетики в Мировой практике.

Эволюция технической системы на примере теплоэнергетики и электроэнергетики.

Раздел №4. Методы разрешения противоречий в технической системе. Методы ТРИЗ. Вепольный анализ.

Противоречия в ТС на примере ТЭС и ГРЭС. Эффективное моделирование, вепольный анализ. Построение и разрушение вепольных систем, стандарты. Приёмы разрешения технических противоречий в теплоэнергетике. Алгоритм выбора приемов, разрешающих техническое противоречие.

Раздел №5. Стандарты, эффекты и решения изобретательских задач. Химия, физика, геометрия, термодинамика в изобретениях.

Использование различных эффектов для разрешения противоречий в теплоэнергетике. Центробежная сила инерции. «Эффект памяти». Температурное расширение. Фазовые переходы. Резонанс. «Омагничивание» воды. Трение. Геометрические эффекты. Химические эффекты.

Раздел №6. Алгоритм решения изобретательских задач (АРИЗ)

Анализ задачи. Анализ модели задачи. Определение идеального конечного результата и физического противоречия. Мобилизация и определение вещественно-полевых ресурсов/ Применение информационного фонда. Изменение и (или) замена задачи. Анализ способа устранения Физического противоречия. Применение полученного ответа.

Раздел №7. Специализированная интеллектуальная программная система "Изобретающая машина"

Семейство "Изобретающая машина". Поиск решения с помощью ИМ-СТАНДАРТЫ. Протокол работы с ИМ-СТАНДАРТЫ. Окончание работы с ИМ-СТАНДАРТЫ. ВЫВОДЫ, Роботы в теплоэнергетике. Задача-диспетчер системы АСУ ТЭС и ТЭЦ.

4.3 Практические занятия (семинары)

№ занятия	№ раздела	Тема	Кол-во часов
1	2	Эвристические методы активации перебора вариантов на	2
		примере прикладных задач экспериментальных исследований ИТП.	
2,3	4	Методы разрешения противоречий в технической системе. Методы ТРИЗ при выборе фотоэлемента для солнечной электростанции. Вепольный анализ.	2
4,5	5	Стандарты, эффекты и решения изобретательских задач в теплоэнергетике. Химия, физика, геометрия, термодинамика в изобретениях. Анализ модели ТЭЦ	2
5,6	6	Алгоритм решения изобретательских задач (АРИЗ). при проектировании холодильных агрегатов. Решение задачи повышения эффективности и экономичности оборудования	2
		Итого:	8

4.4 Лабораторные работы

Лабораторные работы не предусмотрены

4.5 Контрольная работа

Примерная тема контрольной работы:

- Изобретения в теплоэнергетике, их влияние на социальную жизнь общества
- Изобретения в космической энергетике
- Масштабный фактор в изобретениях энергетики

4.6 Самостоятельное изучение разделов дисциплины

No	№	Наименование разделов и тем для	Кол-во
	раздела	самостоятельного изучения	часов
занятия	раздела	camberon enditor only remain	пасов

<u>№</u> занятия	№ раздела	Наименование разделов и тем для самостоятельного изучения	Кол-во часов
1	1	Эвристические методы перебора вариантов. Эвристика. Метод мозгового штурма. Метод перебора вариантов	20
2	2	Эвристические методы активации перебора вариантов. Морфологический метод. Методы теплоэнергетики. Примеры эвристических методов теплоэнергетике	20
3	3	Теория решения изобретательских задач. Анализ теплоэнергетической системы. Прогнозная линия жизни энергетики в Мировой практике. Эволюция технической системы на примере теплоэнергетики и электроэнергетики	20
4	4	Методы разрешения противоречий в технической системе. Методы ТРИЗ. Вепольный анализ. Построение и разрушение вепольных систем, стандарты. Приёмы разрешения технических противоречий в теплоэнергетике. Алгоритм выбора приемов, разрешающих техническое противоречие	20
5	5	Стандарты, эффекты и решения изобретательских задач. Химия, физика, геометрия, термодинамика в изобретениях. Температурное расширение. Фазовые переходы. Резонанс. «Омагничивание» воды. Трение. Геометрические эффекты. Химические эффекты.	10
6	6	Алгоритм решения изобретательских задач (АРИЗ) Применение информационного фонда. Изменение и (или) замена задачи. Анализ способа устранения Физического противоречия. Применение полученного ответа.	10
7	7	Специализированная интеллектуальная программная система. Протокол работы с ИМ-СТАНДАРТЫ. Окончание работы с ИМ-СТАНДАРТЫ. ВЫВОДЫ, Роботы в теплоэнергетике. Задачадиспетчер системы АСУ ТЭС и ТЭЦ.	10
1		Итого	110

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Утёмов В.В., Зиновкина М.М., Горев П.М. Педагогика креативности: прикладной курс научного творчества: учебное пособие/ В.В.Утёмов, М.М. Зиновкина, П.М. Горелов. -изд-во АНОО "Межрегиональный ЦИТО", 2013.- 212с.-ISBN 978-5-85271-468-8. Код доступа: http://biblioclub.ru/index.php?page=book_view_red&book_id=277320
- 2. Основы технического творчества и научных исследований Электронный ресурс/ Ю.В. Пахомова, Н.В. Орлова, А.Ю. Орлов, А.Н. Пахомов. Тамбов: изд-во ФГБОУ ВПО "ТГТУ", 2015.- 81c.-ISBN 978-5-8265-1419-1. Код доступа: http://biblioclub.ru/index.php?page=book_view_red&book_id=444964

5.2 Дополнительная литература

1 Сергеев, А.Г. Сертификация: учебное пособие / А.Г. Сергеев. - М.: Логос, 2008. - 176 с. - (Новая университетская библиотека). - ISBN 978-5-98704-302-6; То же [Электронный ресурс]. -

URL http://biblioclub.ru/index.php?page=book_view_red&book_id=84871. – книгообеспеченность 1экз. на 1 студента.

5.3 Периодические издания

- 1. «Промышленная энергетика» журнал
- 2. Известия вузов «Проблемы энергетики» журнал
- 3. «Теплоэнергетика» журнал
- 5.4 Интернет-ресурсы
- **5.4.1.** Современные профессиональные базы данных и информационные справочные системы:

_

- 1. Библиотека Гумер https://www.gumer.info/ Доступ свободный.
- 2. Научная библиотека http://niv.ru/ Доступ свободный
- 3. eLIBRARY.RU <u>www.elibrary.ru</u> Доступ свободный. Необходима индивидуальная регистрация в локальной сети вуза.
- **4.** Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/ Доступ свободный
- 5. Infolio Университетская электронная библиотека http://www.infoliolib.info/

5.4.2. Тематические профессиональные базы данных и информационные справочные системы:

- 1. Фундаментальная электронная библиотека https://www.teplota.org.ua/
- 2. Теплота, всё для теплоэнергетика https://www.teplota.org.ua/
- 3. Информационный портал РосТепло.py всё о теплоснабжении в России https://www.rosteplo.ru/
- 4. Ассоциация инженеров ABOK https://www.abok.ru/
- 5. Справочник теплоэнергетика https://www.c-o-k.ru/library/document/13100
- 6. Энергетический интернет-портал https://rusenergetics.ru/avtomatika/askue

5.4.3. Электронные библиотечные системы

ЭБС «Университетская библиотека онлайн» – http://www.biblioclub.ru/ После регистрации доступ возможен из любой точки сети Интернет.

ЭБС «Лань» – http://e.lanbook.com/ После регистрации доступ возможен из любой точки сети Интернет.

5.4.4 Дополнительные интернет-ресурсы

4BRAIN Уроки ТРИЗ (сайт) URL: https://4brain.ru/triz/ – Доступ свободный Генрих Саулович Альтов/Книги онлайн «Теория решения изобретательских задач - 88»/ URL: https://www.bookol.ru/nauka_obrazovanie/tehnicheskie_nauki/822/fulltext.htm – Доступ свободный

Правовые документы:

- 1. РМГ 29-99. Рекомендации по межгосударственной стандартизации ГСИ. Метрология. Основные термины и определения (взамен ГОСТ 16263-70)
 - 2. ГОСТ 8.417-81 ГСИ. Единицы физ. величин.
 - 3. Правила по проведению сертификации в Российской Федерации.

- 4. Правила по сертификации. Система сертификации ГОСТ Р: Порядок проведения сертификации продукции.
 - 5. Федеральный закон «О техническом регулировании».
- 6. Постановление от 24 апреля 2002 г. N 28 «О создании системы сертификации работ по охране труда в организациях».

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Тип программного обеспечения	Наименование	Схема лицензирования, режим доступа			
Операционная система	Microsoft Windows	Подписка Enrollment for Education Solutions (EES) по государственному контракту № 2К/17			
Офисный пакет	Microsoft Office	от 02.06.2017 г.			
Интернет-браузер	Google Chrome	Бесплатное ПО, http://www.google.com/intl/ru/policies/terms/			
интернет-ораузер	Яндекс.Браузер	Бесплатное ПО, https://yandex.ru/legal/browser_agreement/			
Мультимедийный плеер	Windows Media Player	Является компонентом операционной системы Microsoft Windows			
Комплекс программ для создания тестов, организации онлайн тестирования и предоставления доступа к учебным материалам	SunRav WEB Class	Лицензионный сертификат от 12.02.2014 г., сетевой доступ через интернет-браузер к корпоративному порталу http://sunrav.og-ti.ru/			
Просмотр и печать файлов в формате PDF	Adobe Reader	Бесплатное ПО, http://www.adobe.com/ru/legal/terms.html			
Система автоматизированного проектирования	КОМПАС-3D	Лицензия по государственному контракту № 20/11 от 07.06.2011 г., сетевой конкурентный доступ			
Пакет прикладных программ для решения задач технических вычислений	MATLAB	Образовательная лицензия по государственному контракту № 20/10 от 29.06.2010 г., сетевой конкурентный доступ			

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, семинарского типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети «Интернет», и обеспечением доступа в электронную информационно-образовательную среду Орского гуманитарно-технологического института (филиала) ОГУ. (ауд.4-307)

Наименование помещения	Материальное-техническое обеспечение
Учебные аудитории:	Учебная мебель, классная доска,
- для проведения занятий лекционного типа,	мультимедийное оборудование (проектор,
семинарского типа,	экран, ноутбук с выходом в сеть «Интернет»)
- для групповых и индивидуальных консультаций;	
- для текущего контроля и промежуточной	

Наименование помещения	Материальное-техническое обеспечение
аттестации	
Компьютерный класс	Учебная мебель, компьютеры (9) с выходом в
	сеть «Интернет», проектор, экран,
	лицензионное программное обеспечение
Помещение для самостоятельной работы	Учебная мебель, компьютеры (3) с выходом в
обучающихся, для курсового проектирования	сеть «Интернет» и обеспечением доступа в
(выполнения курсовых работ)	электронную информационно-
	образовательную среду Орского гуманитарно-
	технологического института (филиала) ОГУ,
	программное обеспечение

Для проведения занятий лекционного типа используются демонстрационного оборудования и учебно-наглядные пособия: - презентации к курсу лекций. следующе наборы

ЛИСТ

согласования рабочей программы

Направление подготовки: 13.03.01 Теплоэнергетика и теплотехника, код и наименование
Профиль: Энергообеспечение предприятий
Дисциплина: Б.1.В.ДВ.7.1 Теория решения изобретательских задач
Форма обучения:
Год набора <u>2018</u>
РЕКОМЕНДОВАНА заседанием кафедры электроэнергетики и теплоэнергетики (ОГТИ) наименование кафедры
протокол №1 от " <u>14</u> " <u>сентября</u> 2017г.
Ответственный исполнитель, и.о.заведующего кафедрой <u>Б.В.Баширова</u> <u>расшифровка подпись</u> расшифровка подпись
Исполнитель: <u>доцент</u> должность О.С. Ануфриенко расшифровка подписи
СОГЛАСОВАНО:
Председатель методической комиссии по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника Е.В.Баширова 19.09.2017г.
код наименование личная подпись расшифровка подписи Заведующий библиотекой Тик И.К. Тихонова личная подпись расшифровка подписи
Начальник ИКЦ М.В. Сапрыкин расшифровка подписи
личная/поопись расшифроми политей
Рабочая программа зарегистрирована в ИКЦ 13.03.01.307.51 / 09.2017 учетный номер
Начальник ИКЦ М.В. Сапрыкин расшифровка подп