минобрнауки РОССИИ

Орский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет» (Орский гуманитарно-технологический институт (филиал) ОГУ)

Кафедра машиностроения, материаловедения и автомобильного транспорта

УТВЕРЖДАЮ

Заместитель директора по учебно методической

работе — Н.И. Тришкина «25» сентября 2019 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б.1.В.ДВ.8.2 Перенос энергии и массы, основы теплотехники и аэрогидродинамики»

Уровень высшего образования БАКАЛАВРИАТ

Направление подготовки

22.03.01 Материаловедение и технологии материалов

(код и наименование направления подготовки)

Материаловедение и технологии материалов в машиностроении

(наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация <u>Бакалавр</u> Форма обучения Очная, заочная

Год начала реализации программы (набора) 2020

Рабочая программа дисциплины «Б.1.В.ДВ.8.2 Перенос энергии и массы, основы теплотехники и аэрогидродинамики» / сост. О.А. Клецова - Орск: Орский гуманитарно-технологический институт (филиал) ОГУ, 2019. – 17 с.

Рабочая программа предназначена студентам очной и заочной форм обучения по направлению подготовки 22.03.01 Материаловедение и технологии материалов

[©] Клецова О.А., 2019 © Орский гуманитарнотехнологический институт (филиал) ОГУ, 2019

Содержание

1 Цели и задачи освоения дисциплины	4
2 Место дисциплины в структуре образовательной программы	4
3 Требования к результатам обучения по дисциплине	5
4 Структура и содержание дисциплины	6
4.1 Структура дисциплины	6
4.2 Содержание разделов дисциплины	8
4.3 Практические занятия (семинары)	10
	12
	13
	14
	14
5.2 Дополнительная литература	14
5.3 Периодические издания	14
5.4 Интернет-ресурсы	14
5.5 Программное обеспечение, профессиональные базы данных и информационные	
справочные системы современных информационных технологий	15
6 Материально-техническое обеспечение дисциплины	15
Лист согласования рабочей программы дисциплины	17
Дополнения и изменения в рабочей программе дисциплины	

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины:

Фундаментальная подготовка бакалавров по направлению подготовки 22.03.01 Материаловедение и технологии материалов в области явлений переноса энергии и массы и базирующихся на них технических процессов и систем.

Задачи:

Изучить аналитическое описание явлений переноса энергии и массы:

- вязкость и перенос количества движения;
- распределение скоростей в ламинарных и турбулентных потоках;
- управления сохранения и микроскопических балансов для изотермических систем;
- межфазный перенос в изотермических системах;
- теплопроводность и механизм переноса энергии;
- управление сохранения и макроскопических балансов для неизотермических систем;
- управления сохранения и макроскопических балансов для многокомпонентных систем;
- межфазный перенос в многокомпонентных системах;
- теория подобия и размерностей.
 - Изучить основы теплотехники и теплопередачи:
- температурные поля;
- теплопроводность;
- конвекция;
- теплоизлучение;
- законы теплопередачи и критерии;
- комплексный теплообмен;
- принципы нагрева и утилизация тепла.
 - Изучить основные физические свойства жидкостей и газов:
- классификация сил, действующих в жидкости;
- абсолютный и относительный покой жидких сред;
- модель идеальной жидкости;
- принципы подобия гидромеханических процессов;
- одномерные потоки жидкостей и газов.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам (модулям) по выбору вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.10 Математика, Б.1.Б.11 Физика

Требования к входным результатам обучения, необходимым для освоения дисциплины

Предварительные результаты обучения, которые должны быть Компетенции								
сформированы у обучающегося до начала изучения дисциплины								
Знать: виды самооценки, уровни притязаний, их влияния на результат ОК-7 способностью	К							
образовательной, профессиональной деятельности; этапы самоорганизации	И							
профессионального становления личности; этапы, механизмы и самообразованию								
трудности социальной адаптации.								
Уметь: самостоятельно оценивать роль новых знаний, навыков и								
компетенций в профессиональной деятельности; самостоятельно								
оценивать необходимость и возможность социальной,								
профессиональной адаптации, мобильности в современном обществе;								
планировать и осуществлять свою деятельность с учетом результатов								
анализа, оценивать и прогнозировать последствия своей социальной и								
профессиональной деятельности.								
Владеть: навыками познавательной и учебной деятельности,								

Предварительные результаты обучения, которые должны быть сформированы у обучающегося до начала изучения дисциплины навыками разрешения проблем; навыками поиска методов решения практических задач, применению различных методов познания; формами и методами самообучения и самоконтроля. Знать: основные законы естественнонаучных дисциплин; специфику теоретического и экспериментального исследования.
навыками разрешения проблем; навыками поиска методов решения практических задач, применению различных методов познания; формами и методами самообучения и самоконтроля. Знать: основные законы естественнонаучных дисциплин; специфику ОПК-2 способностью
практических задач, применению различных методов познания; формами и методами самообучения и самоконтроля. Знать: основные законы естественнонаучных дисциплин; специфику ОПК-2 способностью
формами и методами самообучения и самоконтроля. Знать: основные законы естественнонаучных дисциплин; специфику ОПК-2 способностью
Знать: основные законы естественнонаучных дисциплин; специфику ОПК-2 способностью
теоретического и экспериментального исследорания использорать в
теоретического и экспериментального исследования.
<u>Уметь:</u> применять методы математического анализа и моделирования профессиональной
в ходе теоретического и экспериментального исследования. деятельности знания о
Владеть: навыками теоретического и экспериментального подходах и методах
исследования получения результатов в
теоретических и
экспериментальных
исследованиях
Знать: основные физические явления и законы механики, ОПК-3 готовностью
молекулярной физики и термодинамики, электромагнетизма, применять фундаментальные
волновой и квантовой оптики и их математическое описание математические,
<u>Уметь:</u> применять методы математического анализа при решении естественнонаучные и
физических задач, выявлять физическую сущность явлений и общеинженерные знания в
процессов в устройствах различной физической природы и выполнять профессиональной
применительно к ним простейшие технические расчеты деятельности
Владеть: инструментарием для решения физических задач в своей
предметной области, теоретическими и экспериментальными
методами анализа физических явлений в технических устройствах и
системах
Знать: методы обработки и анализа результатов, полученных при ПК-13 способностью
решении физических задач и при проведении инженерного использовать нормативные и
эксперимента по исследованию физических свойств материалов методические материалы для
<u>Уметь</u> : представлять результаты, полученные при проведении подготовки и оформления
исследований физических свойств материалов, в табличной форме, а технических заданий на
также в виде графических зависимостей; формулировать выводы по выполнение измерений,
полученным зависимостям испытаний, научно-
Владеть: способностью осуществлять самостоятельный поиск исследовательских и опытно-
дополнительной информации из различных источников при конструкторских работ
проведении теоретических и экспериментальных исследований
физических процессов и явлений, систематизировать имеющуюся
информацию

Постреквизиты дисциплины: отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие	Формируемые компетенции				
этапы формирования компетенций	Формируемые компетенции				
Знать: современные информационно-коммуникационные технологии	ПК-1 способностью				
глобальные информационные ресурсы, использовать их в научно	использовать современные				
исследовательской и расчетно-аналитической деятельности в области	информационно-				
материаловедения и технологии материалов	коммуникационные				
<u>Уметь:</u> использовать современные информационно	технологии, глобальные				
коммуникационные технологии, глобальные информационные	информационные ресурсы в				
ресурсы в научно- исследовательской и расчетно-аналитической научно-исследовательской и					
деятельности в области материаловедения и технологии материалов.	расчетно-аналитической				

Планируемые результаты обучения по дисциплине, характеризующие	Формируемые компетенции
этапы формирования компетенций	т ориму опистопали
Владеть: способностью использовать современные информационно-	деятельности в области
коммуникационные технологии, глобальные информационные	материаловедения и
ресурсы в научно-исследовательской и расчетно-аналитической	технологии материалов
деятельности в области материаловедения и технологии материалов	
Знать: методы моделирования при прогнозировании и оптимизации	ПК-3 готовностью
технологических процессов и свойств материалов, стандартизации и	использовать методы
сертификации материалов и процессов.	моделирования при
Уметь: использовать методы моделирования при прогнозировании и	прогнозировании и
оптимизации технологических процессов и свойств материалов,	оптимизации
стандартизации и сертификации материалов и процессов	технологических процессов и
Владеть: готовностью использовать методы моделирования при	свойств материалов,
прогнозировании и оптимизации технологических процессов и	стандартизации и
свойств материалов, стандартизации и сертификации материалов и	сертификации материалов и
процессов	процессов

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 8 зачетных единиц (288 академических часов).

а) Очная форма обучения

Вид работы	Трудоемкость, академических часов					
	7 семестр	8 семестр	всего			
Общая трудоёмкость	144	144	288			
Контактная работа:	34,25	37,25	71,5			
Лекции (Л)	18	18	36			
Практические занятия (ПЗ)	16	18	34			
Консультации		1	1			
Промежуточная аттестация (зачет, экзамен)	0,25	0,25	0,5			
Самостоятельная работа:	109,75	106,75	216,5			
- самостоятельное изучение разделов (пункт 4.4);	32	32	64			
- самоподготовка (проработка и повторение лекционного						
материала и материала учебников и учебных пособий;	24	24	48			
- подготовка к практическим занятиям;	16	18	34			
- подготовка к рубежному контролю и т.п.)	37,75	32,75	70,5			
Вид итогового контроля (зачет, экзамен,	зачет	экзамен				
дифференцированный зачет)						

Разделы дисциплины, изучаемые в 7 семестре по очной форме обучения

	Количество часов					ОВ
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд. работа
			Л	П3	ЛР	раоота
1	Основные понятия и определения.	22	1	4	1	17
2	Первый закон термодинамики	18	2	2	1	14
3	Основные процессы с идеальным газом	15	2	-	-	13
4	Второй закон термодинамики	18	2	2	-	14

		Количество часов					
<u>№</u> раздела	Наименование разделов	всего	аудиторная работа			внеауд.	
			Л	П3	ЛР	работа	
5	Реальные газы. Водяной пар. Влажный воздух	20	2	3	-	15	
6	Термодинамика потока	15	3	-	-	12	
7	Сжатие газов	17	3	3	-	11	
8	Циклы двигателей внутреннего сгорания. Циклы	19	3	2	-	14	
	газотурбинных установок и реактивных						
	двигателей						
	Итого:	144	18	16	_	110	

Разделы дисциплины, изучаемые в 8 семестре по очной форме обучения

	Количество час					
<u>№</u> раздела	Наименование разделов	всего		циторі работа	внеауд.	
			Л	П3	ЛР	работа
9	Циклы паросиловых установок	17	2	2	-	13
10	Циклы холодильных установок	14	2	-	-	12
11	Понятие о тепло и массообмене	17	2	2	-	13
12	Теплопроводность	17	2	2	-	13
13	Конвективный теплообмен	25	2	6	-	17
14	Лучистый теплообмен	14	2	-	-	12
15	Теплопередача и расчет теплообменных аппаратов (основы)	22	3	4	-	15
16	Основы массобмена	18	3	2	_	13
10	Итого:	144	18	18		108
	Bcero:	288	36	34	-	218

б) Заочная форма обучения

Вид работы	Трудоемкость, академических часов						
211A Pwc0121	5 семестр						
Общая трудоёмкость	72	72	144	288			
Контактная работа:	8	4,25	19,25	31,5			
Лекции (Л)	4	2	8	14			
Практические занятия (ПЗ)	4	2	10	16			
Консультации			1	1			
Промежуточная аттестация (зачет, экзамен)		0,25	0,25	0,5			
Самостоятельная работа:	64	67,75	124,75	256,5			
- выполнение контрольной работы		10		10			
- самостоятельное изучение разделов	30	24	35	89			
(пункт 4.4);							
- самоподготовка (проработка и повторение	24	18	35	77			
лекционного материала и материала							
учебников и учебных пособий;							
- подготовка к практическим занятиям;	10	2	10	22			
- подготовка к рубежному контролю и т.п.)		13,75	44,75	68,5			
Вид итогового контроля (зачет, экзамен,		зачет	экзамен				
дифференцированный зачет)							

			Количество часов			
№ раздела	на Наименование разделов	всего	аудиторная работа			внеауд. работа
			Л	П3	ЛР	paoora
1	Основные понятия и определения	11,5				11,5
2	Первый закон термодинамики	18,5		2		16,5
3	Основные процессы с идеальным газом	6	2			4
4	Второй закон термодинамики	18,5		2		16,5
5	Реальные газы. Водяной пар. Влажный воздух	6	2			4
6	Термодинамика потока	11,5				11,5
	Итого:	72	4	4		64

Разделы дисциплины, изучаемые в 6 семестре по заочной форме обучения

	Количество часов					3
№ раздела	здела Наименование разделов		-	циторі работа		внеауд.
			Л	П3	ЛР	работа
7	Сжатие газов	16	2			14
8	Циклы двигателей внутреннего сгорания. Циклы	30		2		28
	газотурбинных установок и реактивных					
	двигателей					
9	Циклы паросиловых установок	26				26
	Итого:	72	2	2		68

Разделы дисциплины, изучаемые в 7 семестре по заочной форме обучения

		Количество часов					
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.	
			Л	П3	ЛР	работа	
10	Циклы холодильных установок	14	2			12	
11	Понятие о тепло и массообмене	24		2		22	
12	Теплопроводность	23		2		21	
13	Конвективный теплообмен	31		6		25	
14	Лучистый теплообмен	22				22	
15	Теплопередача и расчет теплообменных	16	4			12	
	аппаратов (основы)						
16	Основы массобмена	14	2			12	
	Итого:	144	8	10		126	
	Bcero:	288	14	16		258	

4.2 Содержание разделов дисциплины

Раздел 1. Основные понятия и определения.

Термодинамическая система и рабочее тепло. Параметры состояния. Уравнения состояния идеального газа. Газовая постоянная. Способы задания смеси. Кажущаяся молекулярная масса смеси. Равновесные и неравновесные взаимодействия. Термодинамические процессы. Обратимость. Массовая, объемная и мольная теплоемкости. Истинная и средняя теплоемкости. Зависимость теплоемкости от температуры. Расчет количества теплоты. Зависимость мольной теплоемкости от атомности газов. Теплоемкость газовых смесей.

Раздел 2. Первый закон термодинамики.

Сущность первого закона термодинамики. Теплота и работа как форма энергий. Внутренняя энергия. Закон сохранения энергии. Атомическое выражение первого закона термодинамики. Энтальпия. Энтропия. Диаграмма ТS для идеального газа. Свойства внутренней энергии и энтальпия идеального газа. Закон Майера.

Раздел 3. Основные процессы с идеальным газом.

Изохорный, изобарный, изотермический и адиабатный (изоэнтропный) процессы, определение теплоты, работы, внутренней энергии, энтальпии и энтропии. Изображение процессов в ру и TS координатах.

Раздел 4. Второй закон термодинамики.

Необратимые процессы и циклы. Основные формулировки второго закона термодинамики. Цикл Карно. Интеграл Клаузиса. Энтропия как мера необратимости процесса. Объединенное уравнение первого и второго закона термодинамики. Измерение энтропии изолированной термодинамической системы. Энтропия и вероятность. Формула Больцмана. Статический характер второго закона термодинамики. Энергия теплоты, потери энергии из-за необратимости.

Раздел 5. Реальные газы. Водяной пар. Влажный воздух.

Уравнение Ван-дер-Вальса и его анализ. Водяной пар как реальный газ. Парообразование, пограничные кривые, критическое состояние вещества. Таблицы воды и водяного пара. Фазовые диаграммы гѕ и іѕ (nѕ) для водяного пара. Сжимаемость. Диаграмма pv=f(p). Понятия о дифференциальных соотношениях термодинамики. Влажный воздух. Основные понятия и определения: абсолютная и относительная влажность, точка росы, влагосодержание, энтальпия. Jd – диаграмма.

Раздел 6. Термодинамика потока.

Первый закон термодинамики для потока. Располагаемая работа, работа проталкивания, техническая работа. Энергия потока. Потери энергии из-за необратимости. Адиабатное истечение газа и пара через суживающееся сопло; определение скорости и расхода. Критический режим истечения, его физическая сущность. Комбинированное сопло. Дросселирование газов и паров.

Раздел 7. Сжатие газов.

Термодинамические основы процессов газов и паров в компрессоре.

Раздел 8. Циклы двигателей внутреннего сгорания.

Циклы газотурбинных установок и реактивных двигателей. Типы двигателей внутреннего сгорания (ДВС) и их термодинамические циклы с подводом теплоты по изохорде, по изобаре и смешанные определения работы и КПД циклов. Изображение циклов в ру и ТЅ – диаграммах. Схема и цикл газотурбинной установки (ГТУ) с изобарным подводом тепла; определение работы и КПД цикла. Изображение циклов в ру – диаграмме. ГТУ с регенерацией теплоты. Степень регенерации. Замкнутая ГТУ. Схемы и циклы реактивных двигателей, использующих для горения атмосферный воздух или специальные окислители; работа и КПД цикла, области применения.

Раздел 9. Циклы паросиловых установок.

Работа и КПД цикла, определение их по із диаграмме. Действительный цикл с необратимым расширением. Влияние начальных и конечных параметров пара на КПД цикла. Промежуточный перегрев пара. Регенеративный подогрев питательной воды. Парогазовый цикл. Цикл магнитогидродинамического генератора (МГДГ) как пример без машинного преобразования теплоты в электроэнергию. Особенности циклов атомных электростанций.

Раздел 10. Циклы холодильных установок.

Обратимый цикл Карно. Схемы и циклы воздушной и паро-компрессорной холодильной установок. Определение холодильного коэффициента. Тепловой насос; оптимальный коэффициент.

Раздел 11. Понятие о тепло и массообмене.

Физические основы процессов переноса теплоты и массы. Микроскопический и макроскопический характер тепло- и массообмена. Основные виды теплообмена: теплопроводность, конвекция, тепловое излучение. Молярная и турбулентная (конвективная) диффузия. Сложные процессы тепло- и массообмена.

Раздел 12. Теплопроводность.

Поле и градиент температур; тепловой закон. Закон Фурье. Коэффициент теплопроводности, ее значение для различных веществ. Стационарная теплопроводность плоских одно- и многослойных стенок; эпюры температур, термическое сопротивление. Понятие расчета оребрения. Дифференциальное уравнение теплопроводности; коэффициент температуропроводности. Условие

однозначности. Понятие подобия процессов теплопроводности; критерии Био и Фурье. Определение изменения температур по времени в характерных точках простейших тел по вспомогательным графикам. Регулярный тепловой режим. Понятие методов конечных разностей и элементарных балансов.

Раздел 13. Конвективный теплообмен.

Конвективный теплообмен как совместный перенос массы и теплоты в жидкости. Виды и режимы движения жидкости. Уравнение теплоотдачи Ньютона – Рихмана, коэффициент теплоотдачи, его физический смысл; факторы, определяющие величину коэффициента теплоотдачи. Понятие о тепловом и пограничных слоях. Система дифференциальных уравнений конвективного теплообмена. Понятие теории подобия. Критерии подобия Рейнольдса, Прандтля, Грасгофа, Нульсета, их физический смысл. Расчет основных случаев конвективного теплообмена: ламинарное и турбулентное движение в трубах, поперечное обтекание одиночной трубы и пучков труб, свободное движение в неограниченном и ограниченном пространстве. Теплообмен при кипении и конденсации.

Раздел 14. Лучистый теплообмен.

Особенности, поглощение, отражение лучистой энергии. Абсолютно черное, белое и диатермическое тепло. Потребность потока излучения и спектральная интенсивность излучения. Законы Планка и Вина, Стефана – Больцмана для абсолютно черного и серых тел. Законы Кирхгофа и Ламберта. Простейшие случаи лучистого теплообмена в прозрачной среде. Собственное, отраженное и эффективное излучение. Уменьшение лучистого потока с помощью экранов.

Раздел 15. Теплопередача и расчет теплообменных аппаратов (основы).

Сложный теплообмен – теплопередача. Теплопередача через одно и многослойные плоские и цилиндрические стенки. Коэффициент теплопередачи; полное энергетическое сопротивление. Эпюра температур поверхности стенки. Тепловая изоляция; критический диаметр изоляции трубы.

Раздел 16. Основы массобмена.

Основные понятия и определения: концентрация, градиент концентрации, поток массы. Молекулярная диффузия, закон Фика. Конвективный массообмен – массоотдача. Аналогия процессов тепло и массобмена. Применение теории подобия для процессов переноса массы.

4.3 Практические занятия (семинары)

а) Очная форма обучения (7 семестр)

№ занятия	№ раздела	Тема	Кол-во часов
1	1	Уравнение молекулярной диффузии. Конвекционная диффузия. Конвекционный массобмен. Условие подобия полей концентрации температур.	2
2	1	Термодинамическая система. Энергетически изолированная система. Характеристика состояния рабочего тела. Уравнение состояния идеального газа. Способы задания смеси. Парциальное давление и парциальный объем. Закон Дальтона.	2
3	2	Первый закон термодинамики. Функция состояния и функция процесса. Уравнение Майера. Выражение работы изменения объема процессов в ру – диаграмме и теплота в ТS – диаграмме.	2
4	4	Второй закон термодинамики. Критерии эффективности прямого и обратного циклов. Цикл Карно. Уравнение термического КПД. Энергия изолированной системы.	2
5	5	Водяной пар и влажный воздух. Степень сухости, степень влажности. Протекание изотермы для водяного пара в ру — диаграмме. Критическая точка. Определение молекулярной масс и газовой постоянной влажности воздуха.	3
6	7	Сжатие газов. Преимущество многоступенчатого сжатия с промежуточным охлаждением. Изотермический и адиабатный КПД компрессора.	3
7	8	Циклы газотурбинных и паросиловых установок.	2

№ занятия	№	Тема	Кол-во
№ занятия	раздела	1 CMa	часов
		Итого	16

Очная форма обучения (8 семестр)

№ занятия	№ раздела	Тема	Кол-во часов
8	9	Теплопроводность. Граничные условия первого, второго и	2
	4.4	третьего родов.	
9	11	Теория подобия. Физический смысл коэффициентов (критериев)	2
		подобия. Вынужденное турбулентное движение в трубе.	
10	12	Типы теплообменных аппаратов.	2
11	13	Изучение режимов течения жидкости. Построение эпюр скоростей в трубе при ламинарном, переходном, турбулентном режимах скоростей. Коэффициент Кориолиса α.	2
12	13	Основы теории гидродинамического подобия. Определение коэффициентов (критериев) подобия. Физический смысл критериев подобия.	2
13	13	Закон сохранения энергии в жидкости. Гидравлические потери.	2
14	15	Определение коэффициента теплопередачи α , теплового потока q и количества тепла Q, теряемого стенкой для случаев: а) без тепловой изоляции; б) с тепловой изоляцией; в) с двойной тепловой изоляцией.	2
15	15	Определение коэффициентов теплоотдачи от печной атмосферы к поверхности нагреваемого металла.	2
16	16	Определение расхода топлива камерной печью постоянного действия для нагрева стальных заготовок.	2
		Итого	18
		Всего	34

б) Заочная форма обучения (5 семестр)

№ занятия	№ раздела	Тема	Кол-во часов
1	2	Первый закон термодинамики. Функция состояния и функция процесса. Уравнение Майера. Выражение работы изменения объема процессов в ру – диаграмме и теплота в ТS – диаграмме.	
2	4	Второй закон термодинамики. Критерии эффективности прямого и обратного циклов. Цикл Карно. Уравнение термического КПД. Энергия изолированной системы.	
		Итого	4

Заочная форма обучения (6 семестр)

№ занятия	№	№ Тема	Кол-во
ME SUIMINA	раздела	1 Civia	часов
3	8	Циклы газотурбинных и паросиловых установок.	2
		Итого	2

№ занятия	No	Тема	Кол-во
Nº Sammina	раздела	1 Civita	часов
4	11	Теория подобия. Физический смысл коэффициентов (критериев)	2
		подобия. Вынужденное турбулентное движение в трубе.	
5	12	Типы теплообменных аппаратов.	2
6	13	Изучение режимов течения жидкости. Построение эпюр	2
		скоростей в трубе при ламинарном, переходном, турбулентном	
		режимах скоростей. Коэффициент Кориолиса α.	
7	13	Основы теории гидродинамического подобия. Определение	2
		коэффициентов (критериев) подобия. Физический смысл	
		критериев подобия.	
8	13	Закон сохранения энергии в жидкости. Гидравлические потери.	2
		Итого	10
		Всего	16

4.4 Контрольная работа (6 семестр)

При выполнении контрольной работы рекомендуется придерживаться следующих требований:

- 1. Переписать полностью условие задачи для своего варианта; параметры вы-бираются из таблиц по последней и предпоследней цифрам шифра.
- 2. При решении задачи пояснить словами вычисляемую величину, привести соответствующую формулу, найти неизвестную величину в буквенном и числовом выражении.
- 3. Для каждой найденной величины надо указать единицы измерения (невыполнение этого требования равносильно ошибке).
- 4. Вычисления производить при помощи микрокалькулятора с точностью до третьей значащей цифры. Графики должны быть построены в масштабе, желательно, на миллиметровой бумаге.
- 5. В ответах следует придерживаться терминов и обозначений, принятых в учебнике. Результаты решения должны быть представлены в единицах СИ.
- 6. Если при решении задачи какая-либо величина берётся из таблицы, то надо назвать источник с указанием автора.
- 7. Текст следует писать разборчиво, оставляя поля для замечаний рецензента, страницы нумеровать.

По согласованию с преподавателем, ведущим учебные занятия по курсу, в качестве контрольной работы может быть представлено решение технической задачи, стоящей перед студентом на производстве. Особенно большой интерес представляют проблемы, при решении которых получен реальный экономический эффект. Консультации по их разработке и внедрению результатов обеспечивает кафедра.

Задача По известному массовому составу продуктов сгорания на выходе из нагревательной печи определить: мольную массу, газовую постоянную, плотность и удельный объём при нормальных условиях; средние массовые и объёмные теплоёмкости при постоянном давлении в пределах температур от 0 до t_1 °C и от 0 до t_2 °C; количество теплоты, отдаваемое 1 кг газов при изобарном охлаждении от t_1 до t_2 °C. Состав газовой смеси и другие данные, необходимые для решения задачи, выбрать из табл. 1 по двум последним цифрам шифра.

Варианты задания к задаче

Посл.		Массові	ый состав с	емеси, %				
цифра шифра	CO_2	H ₂ O	N_2	O_2	СО	Предпоследняя	t ₁ , °C	t ₂ , °C
9	20	8	72	-	9	20	8	72

8	15,5	8,9	71,4	-	8	15,5	8,9	71,4
7	9,9	10	70,7	-	7	9,9	10	70,7
6	2,9	11,3	69,9	-	6	2,9	11,3	69,9
5	18	7,2	72,8	2	5	18	7,2	72,8
4	16	6,9	73,6	4	4	16	6,9	73,6
3	14	5,6	74,7	6	3	14	5,6	74,7
2	12	4,8	77,2	8	2	12	4,8	77,2
1	14,5	15	66,6	-	1	14,5	15	66,6
0	18,8	13,6	67,6	-	0	18,8	13,6	67,6

4.5 Самостоятельное изучение разделов дисциплины

а) Очная форма обучения (7 семестр)

№	Наименование разделов и тем для самостоятельного изучения	Кол-во
раздела		часов
1	Термодинамическая система и рабочее тепло. Массовая, объемная и	5
	мольная теплоемкости. Теплоемкость газовых смесей.	
2	Теплота и работа как форма энергий. Энтальпия. Энтропия. Закон Майера.	5
3	Необратимые процессы и циклы. Измерение энтропии изолированной	5
	термодинамической системы. Статический характер второго закона	
	термодинамики. Энергия теплоты, потери энергии из за необратимости.	
4	Необратимые процессы и циклы. Измерение энтропии изолированной	5
	термодинамической системы Статический характер второго закона	
	термодинамики. Энергия теплоты, потери энергии из за необратимости.	
5	Таблицы воды и водяного пара. Фазовые диаграммы rs и is (ns) для	4
	водяного пара. Сжимаемость.	
6	Первый закон термодинамики для потока. Энергия потока. Адиабатное	4
	истечение газа и пара через суживающееся сопло; определение скорости и	
	расхода. Дросселирование газов и паров.	
8	Типы двигателей внутреннего сгорания (ДВС) и их термодинамические	4
	циклы с подводом теплоты по изохорде, по изобаре и смешанные	
	определения работы и КПД циклов. Степень регенерации. Замкнутая ГТУ.	
	Итого	32

Очная форма обучения (8 семестр)

№ раздела	Наименование разделов и тем для самостоятельного изучения	Кол-во часов
9	Работа и КПД цикла, определение их по із диаграмме. Промежуточный перегрев пара. Парогазовый цикл. Особенности циклов атомных электростанций.	4
10	Схемы и циклы воздушной и паро-компрессорной холодильной установок. Определение холодильного коэффициента.	4
11	Микроскопический и макроскопический характер тепло- и массообмена. Сложные процессы тепло- и массообмена.	4
12	Поле и градиент температур; тепловой закон. Закон Фурье. Дифференциальное уравнение теплопроводности; коэффициент температуропроводности. Понятие подобия процессов теплопроводности; критерии Био и Фурье.	4
13	Виды и режимы движения жидкости. Понятие теории подобия. Критерии подобия Рейнольдса, Прандтля, Грасгофа, Нульсета, их физический смысл.	4
14	Абсолютно черное, белое и диатермическое тепло. Законы Планка и Вина,	4

№ раздела	Наименование разделов и тем для самостоятельного изучения	Кол-во часов
	Стефана – Больцмана для абсолютно черного и серых тел. Законы Кирхгофа и Ламберта.	
15	Сложный теплообмен – теплопередача. Тепловая изоляция; критический диаметр изоляции трубы	4
16	Аналогия процессов тепло и массобмена. Применение теории подобия для процессов переноса массы.	4
	Итого	32
	Всего	64

б) Заочная форма обучения (5 семестр)

No	Наименование разделов и тем для самостоятельного изучения	Кол-во
раздела		часов
1	Основные понятия и определения.	7,5
2	Первый закон термодинамики.	7,5
4	Второй закон термодинамики.	7,5
6	Термодинамика потока.	7,5
	Итого	30

Заочная форма обучения (6 семестр)

$\mathcal{N}_{\underline{0}}$	Наименование разделов и тем для самостоятельного изучения	Кол-во
раздела		часов
8	Циклы двигателей внутреннего сгорания.	12
9	Циклы паросиловых установок.	12
	Итого	24

Заочная форма обучения (7 семестр)

<u>No</u>	Наименование разделов и тем для самостоятельного изучения	Кол-во
раздела		часов
11	Понятие о тепло и массообмене.	8
12	Теплопроводность.	8
13	Конвективный теплообмен.	8
14	Лучистый теплообмен.	11
	Итого	35
	Всего	89

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

- 1. Зеленцов, Д. В. Техническая термодинамика. Учебное пособие [Электронный ресурс] / Д.В. Зеленцов Самарский государственный архитектурно-строительный университет, 2012. Режим доступа: http://biblioclub.ru/index.php?page=book&id=143845
- 2. Метревели В.Н. Сборник задач по курсу гидравлики с решениями: учебное пособие. М.: Высшая школа, 2007. 190 с.
- 3. Кудинов, В. А. Теплотехника. Учебное пособие [Электронный рурс] / В.А. Кудинов, Э.М. Карташов, Е.В. Стефанюк Абрис, 2012. Режим доступа: $\frac{\text{http://biblioclub.ru/index.php?page=book\&id=117645/}$

5.2 Дополнительная литература

- 1. Филин, В.М. Гидравлика, пневматика и термодинамика: курс лекций / под ред. В. М. Филина. Москва: Форум, 2008. 320 с. Библиогр. : с. 310-311. ISBN 978-5-8199-0358-2 (ИД "ФОРУМ").
- 2. Батрак, В. И. Мультимедийное сопровождение лекций к курсу "Гидравлика" [Электронный ресурс] / В. И. Батрак. Электрон. текстовые дан. (1 файл: 4.47 Мб). Орск: ОГТИ, 2010. -Adobe Acrobat Reader. (Университетская библиотека http://biblioclub.ru/).

5.3 Периодические издания

1 Вопросы материаловедения.

5.4 Интернет-ресурсы

5.4.1. Современные профессиональные базы данных и информационные справочные системы

- 1. Бесплатная база данных ГОСТ https://docplan.ru/ Доступ свободный.
- 2. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/ Доступ свободный.

5.4.2. Тематические профессиональные базы данных и информационные справочные системы

- 1. Материаловедение http://www.materialscience.ru/ Доступ свободный.
- 2. Единое окно доступа к образовательным ресурсам. Машиностроение http://window.edu.ru/catalog/?p_rubr=2.2.75.11 Доступ свободный.

5.4.3. Электронные библиотечные системы

- 1. ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru/ После регистрации доступ возможен из любой точки сети Интернет.
- 2. ЭБС Znanium.com https://znanium.com/ После регистрации доступ возможен из любой точки сети Интернет.

5.4.4 Дополнительные Интернет-ресурсы

- 1. BestReferat.ru Банк рефератов, дипломы, курсовые работы, сочинения, доклады—www.bestreferat.ru Доступ свободный.
 - 2. Pandia.ru Энциклопедия знаний» www.pandia.ru Доступ свободный.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Тип программного обеспечения	Наименование	Схема лицензирования, режим доступа
Операционная система	Microsoft Windows	Подписка Enrollment for Education Solutions (EES) по государственному контракту
Офисный пакет	Microsoft Office	№ 3Д/19 от 10.06.2019 г.
Интернет-браузер	Google Chrome	Бесплатное ПО, http://www.google.com/intl/ru/policies/terms/

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа, для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. В аудитории

имеется персональный компьютер с установленным лицензионным программным обеспечением и мультимедийное оборудование (проектор, экран, звуковые колонки).

Для проведения практических работ предназначена ауд. № 4-132. В оснащение аудитории входит: учебная мебель, классная доска, лабораторное установки (установка изучения течения жидкости, установка демонстрации закона сохранения энергии, насосная установка, баки сливные), макеты, плакаты.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети «Интернет», и обеспечением доступа в электронную информационно-образовательную среду Орского гуманитарно-технологического института (филиала) ОГУ (ауд. № 4-307).

Все перечисленные аудитории оснащены комплектами ученической мебели, техническими средствами обучения, служащими для представления учебной информации большой аудитории.

Наименование помещения	Материальное-техническое обеспечение
Учебные аудитории:	Учебная мебель, классная доска, мультимедийное
- для проведения занятий лекционного типа,	оборудование (проектор, экран, персональный
- для групповых и индивидуальных	компьютер или ноутбук с выходом в сеть
консультаций;	«Интернет»)
- для текущего контроля и промежуточной	
аттестации	
Учебная аудитория для проведения	Учебная мебель, классная доска, лабораторное
практических работ	установки (установка изучения течения жидкости,
	установка демонстрации закона сохранения
	энергии, насосная установка, баки сливные),
	макеты, плакаты
Помещение для самостоятельной работы	Учебная мебель, компьютеры с выходом в сеть
	«Интернет» и обеспечением доступа в
	электронную информационно-образовательную
	среду Орского гуманитарно-технологического
	института (филиала) ОГУ, программное
	обеспечение

Для проведения занятий лекционного типа используются следующе наборы демонстрационного оборудования и учебно-наглядные пособия:

⁻ плакаты.

ЛИСТ согласования рабочей программы

Направление подготовки: <u>22.03.01 Материаловедение и технологии материалов</u>	
Профиль: Материаловедение и технологии материалов в машиностроении	
Дисциплина: Б.1.В.ДВ.8.2 Перенос энергии и массы, основы теплотехники и аэрогидрод	динамики
Форма обучения:	
Год набора <u>2020</u>	
РЕКОМЕНДОВАНА заседанием кафедры Машиностроения, материаловедения и автомобильного транспорта (ОГТИ)	
наименование кафедры	7
протокол № <u>1</u> от « <u>04</u> » <u>сентября</u> 20 <u>19</u> г.	
Ответственный исполнитель, заведующий кафедрой	
	В.И. Грызунов
наименование кафедры подпись расшифровка подписи	лит. т рызунов
Исполнители: доцент О.	А. Клецова
должность подпись расшифровка подписи	
СОГЛАСОВАНО:	
Председатель методической комиссии по направлению подготовки 10 от 05.09. 2	019
22.03.01 Материаловедение и технологии материалов	
код наименование личная подпись расшифровка подписи	
Заведующий библиотекой	
	Камышанова
	овка подписи
Начальник ИКЦ	
. //	C
	Сапрыкин
T 100 1010	
Рабочая программа зарегистрирована в ИКЦ & 2. 03. 01. self. 11. 55/09. 2019	
Начальник ИКЦ	
М.В. Сапрыкин	
личная фарись расшифровка подписи	